министерство просвещения российской федерации

Министерство образования Свердловской области Муниципальное казённое учреждение Белоярского муниципального округа «Управление образования»,

Белоярский муниципальный округ Свердловской области Муниципальное автономное общеобразовательное учреждение «Косулинская средняя школа общеобразовательная школа №8»

СОГЛАСОВАНО:

Руководитель методического совета протокол № 2 от «29» августа 2025 года

/Шилина Е.А.

УТВЕРЖДЕНО:

Директор МАОУ «Косулинская СОШ № 8»

Баженова Т.А.

No OT «

2025 года

Рабочая программа курса дополнительного образования Разработка автоматизированных устройств на микроконтроллере ARDUINO (для 8-11 классов образовательных организаций»

Разработчики:

Перекальский Игорь Николаевич, педагог дополнительного образования

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

1.1. Нормативно-правовые основания разработки программ.

Нормативную правовую основу разработки программы составляют:

- Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- приказ Министерства просвещения Российской Федерации от 09 ноября 2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 1.2. Направленность программы информационные технологии/робототехника.

1.2. Аннотация

1.2.1. В современном мире область применения робототехники в различных сферах деятельности человека очень широкая и не перестает расти. Применение роботов позволяет значительно снизить участие человека в тяжелой и опасной работе. В связи с этим обучение робототехнике детей становится все больше актуальной и значимой задачей.

Изучение робототехники позволяет ученикам развивать коммуникативные навыки, так как в основном конструирование роботов происходит в группе, учиться принимать самостоятельные и нестандартные решения, развивать творческое мышление.

В ходе освоения предлагаемой программы учащимся будет предложено пройти полный цикл разработки и создания технического устройства решающее определенные технические задачи. Круг задач, который предстоит решать включает в себя: поиск проблематики, формирование и проверка гипотез решения, создание технического задания на MVP, разработка и реализация макетного решения, техническое и экономическое обоснование, выбранных путей решения проблемы. В качестве средств обучения планируется использовать:

Платформу разработки Arduino, обладающую возможностями промышленного контроллера, в то же время позволяющая создавать прототипы любых устройств участникам не имеющих опыт профессионального программирования контроллеров;

Оборудование 3Д моделирования, инструмент для создания прототипов решения.

В результате реализации программы участникам будет предложено участие в конкурсе технологической (выставки, инженерные соревнования), экономической (акселераторы, грантовый конкурсы) направленностей.

Результатом освоения программы, считается полное понимание учащимися стадий разработки продуктового решения, защита своего проекта перед профессиональным сообществом, полученная обратной связи.

- 1.2.1. Программа рассчитана на детей в возрасте от 14 лет.
- 1.2.2. Срок освоения программы: 360 акад. час.
- 1.2.3. Сроки реализации: в течении двух учебных лет.
- 1.2.4. На занятиях реализована как индивидуальная форма работы каждый участник решает проектную задачу, в определенной области, взаимодействуя с педагогом, так и групповая (проектная) учащиеся совместно вырабатывают гипотезы, производят их проверку, формируют техническое задание на MVP.

1.3. Новизна, актуальность, педагогическая целесообразность

Привлечение школьников к проектной деятельности области создания автоматизированных систем, робототехники, обмену технической информацией и начальными инженерными знаниями, развитию новых научно-технических идей позволит создать необходимые условия для высокого качества образования, за счет использования в образовательном процессе новых педагогических подходов и применение новых информационных и коммуникационных технологий. Понимание феномена технологии, знание законов техники, позволит выпускнику школы соответствовать запросам времени и найти своё место в современной жизни.

Подобная концепция подачи материала — через комбинацию теории и практики, а также привязки их к реальной жизни, позволяет легко добиваться высоких и устойчивых результатов в обучении, а также формировать у обучающихся интерес и инициативу к продолжению работы в рамках изучения направления. Переключение типа выполняемых задач в ходе занятия позволяет не угаснуть мотивации и интересу учащихся в любом возрасте.

1.4 Адресат

Целевая аудитория учебной программы - это учащиеся возрастом от 14 до 18 лет, которые проявляют интерес к программированию на Arduino и хотят освоить принцип разработки проектов с использованием Arduino. Эти учащиеся могут быть школьниками, старшеклассниками или студентами.

Они часто обладают следующими характеристиками:

- 1. Имеют небольшой или средний уровень знаний в программировании на Arduino и хотят развить их дальше, применяя их на практике с использованием языка C++.
- 2. Интересуются информационными технологиями, компьютерными науками и/или разработкой программного обеспечения для микроконтроллеров.
- 3. Участвуют в школьных (или внеучебных) проектах, связанных с Arduino, и хотят научиться использовать язык C++ для расширения возможностей своих проектов.
- 4. Желают применять свои программные навыки на Arduino для решения реальных проблем или создания проектов, включающих взаимодействие с окружающим миром будь то умный дом, робототехника, электроника и т. д.
- 5. Готовы к работе в группе и совместному проектному обучению, так как принцип формирования учебной группы включает разделение студентов на команды, которые будут работать над проектами с использованием Arduino и языка C++.

Данная целевая аудитория обладает активным интересом к программированию на Arduino и возможностью применять полученные знания на практике через проектные работы. Они также обладают социальными навыками, необходимыми для совместной работы в командах. Учащиеся данной аудитории готовы к решению реальных задач с использованием языка Python и мотивированы на развитие своих программных навыков для работы с Arduino.

1.5 Режим занятий

Продолжительность одного академического часа – 45 мин.

Перерыв между занятиями - 10 минут

Общее колличество часов в неделю – 4 часа Занятия 1 раз в неделю по 2 часа

1.6 Объем

Объем программы – 360 часов

Программа рассчитана на 2 года обучения:

1 год обучения 180 часа в год

2 год обучения 180 часа в год

1.7 Особенности организации образовательного процесса

Традиционная модель. содержание программы не предусматривает возможность проведения занятий в дистанционном формате.

1.8 Форма обучения

Групповая. основными формами учебного процесса являются интерактивные лекции, индивидуальная работа с практическими заданиями, создание и защита итогового проекта.

1.9 Виды занятий

Семинар.

1.10 Форма подведения итогов реализации программы

Презентация.

2. ЦЕЛИ И ЗАДАЧИ ПРОГРАММЫ

2.1 Основная цель программы — через проблемный подход обучить основам создания автоматизированных технических устройств и систем, решающих определённые промышленные и социальные задачи.

2.2. Задачи

Учащиеся, успешно освоившие программу,

смогут:

- Формулировать проблематику;
- Формировать и проверять гипотезы;
- Формировать техническое задание на устройство;
- Использовать, в разработке MVP, контроллеры и соответствующее программное обеспечение;
- Создавать концептуальные и технические схемы устройства;
- Познакомятся с инструментами 3Д моделирования, прототипирования
- Изучат основы цифровой схемотехники и создания прототипов устройств
- Научаться презентовать свое решение.

сделают:

• Макетное решение (MVP);

- Экономические и технические выкладки и обоснования;
- Презентацию решения;

решат:

- задачу по созданию продуктового решения;
- задачу выбора необходимых инструментов, материалов и технологий для создания прототипов устройства;

Ключевые понятия

Автоматизация, микроконтроллеры, 3Д моделирование, цифровая схемотехника, проектная деятельность.

2.3. СОДЕРЖАТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

В основе образовательной программы лежат следующие идеи:

- идея сотрудничества, основанная на гуманных отношениях обучающихся и педагогов;
- идея выбора, реализующаяся в предоставлении обучающимся возможностей выбора и вариативности своего проекта;
- идея научности, т.е. ориентация педагога на использование в образовательном процессе достижений современной науки, новых педагогических и информационных технологий для формирования компетенций обучающихся.

3.6. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

	Наименование разделов,	Методы совместной	Трудоемкость	Вт	ом числе	Самостоятельная работа	Ресурсы (то, что	Форма контроля
	дисциплин (модулей) и тем	деятельности педагога и учащихся		Теорети ческая часть	Практич еская работа		понадобится конкретно на данное занятие)	
1	Структурирование идеи. Анализ корневых причин. Постановка гипотез.	Теоретическая лекция	2 академ. часа	2	0	0	Проектор и экран/ТВ панель	Формирующ ий
2	Оборудование и программное обеспечение для создания прототипов устройств MVP	Теоретическая лекция	2 академ. часа	2	0	0	Проектор и экран/ТВ панель	Формирующ ий
3	Проектирование архитектуры решения. V-модель.	Теоретическая лекция	I академ. час	1	0	0	Проектор и экран/ТВ панель	Формирующ ий
4	Понятие технического задания. Формирование ТЗ будущего проекта на основе пользовательских сценариев	Теоретическая лекция, практическая деятельность	1 академ. час	1	1	0	Проектор и экран/ТВ панель	Формирующ ий
5	Планирование разработки решения. Комбан доска, UML диаграммы. Понятие стейкходеров и их влияние на проект	Теоретическая лекция, практическая деятельность	I академ. час	1	1	0	Проектор и экран/ТВ панель	Формирующ ий

6	Программирование контроллеров Atmega на языке С. Знакомство с IDE.	Теоретическая лекция, практическая деятельность	1 академ. час	1	1	1	Проектор и экран/ТВ панель, Конструктор «Матрешка», Ноутбуки	Формирующ ий
7	Инструменты разработки MVP (интерактивные прототипы, мобильные приложения, web приложения). Пользовательское тестирование. Сценарии проведения тестирования.	Теоретическая лекция, практическая деятельность	2 академ. часа	1	1	1	Проектор и экран/ТВ панель, фотокамера	Формирующ ий
8	Базовые элементы языка С++. Использование платформы Arduino для создания прототипов MVP. Простейшие электрические схемы. Электрические измерения.	Теоретическая лекция, практическая деятельность	2 академ. часа	1	1	1	Проектор и экран/ТВ панель, Конструктор «Матрешка», Ноутбуки, Мультиметры	Формирующ ий
9	Бизнес модели и модели монетизации. Финансовое планирование и моделирование. Ведомость ресурсов, финансовая модель, финансовый план.	Теоретическая лекция, практическая деятельность	2 академ. часа	1	1		Проектор и экран/ТВ панель, фотокамера	Формирующ ий

10	Основы электроники	Теоретическая	4 академ. часа	1	1	1	Проектор и	Формирующ
	и схемотехники	лекция,					экран/ТВ	ий
	Использование	практическая					панель,	
	встроенных	деятельность					Конструктор	
	библиотек и шилдов						«Матрешка»,	
	на контроллере						Ноутбуки,	
	Atmega						Мультиметры	
11	Оценка объема	Теоретическая	2 академ. часа	1	1	1	Проектор и	Формирующ
	потенциального	лекция,					экран/ТВ	ий
	рынка. Бизнес модель.	практическая					панель	
	Команда проекта.	деятельность						
12	Работа с	Теоретическая	2 академ. часа	3	3	3	3Д принтер.	Формирующ
	оборудование 3д	лекция,					Инструменты	ий
	моделирования и	практическая					для создания	
	прототипирования	деятельность					прототипов	
							Ноутбуки	
13	Среда 3д	Теоретическая	4 академ. часов	3	3	3	Проектор и	Формирующ
	моделирования Fusion	лекция,					экран/ТВ	ий
	3д. Основы создание	практическая					панель, 3Д	
	2д чертежей 2Д	деятельность					принтер.	
							Ноутбуки	
14	Преобразование в ЗД	Теоретическая	4 академ. часов	3	3	3	Проектор и	Формирующ
	объемные фигуры.	лекция,					экран/ТВ	ий
	Рендеринг. Слайсинг	практическая					панель,	
		деятельность					3Д принтер.	
							Ноутбуки	
15	Подготовка	Теоретическая	2 академ. часов	1	4	4	Проектор и	Формирующ
	презентации	лекция,					экран/ТВ	ий
	проекта. Модели	практическая					панель,	
	презентаций.	деятельность						
	Структура защиты							
	проекта							

СОДЕРЖАНИЕ

	Наименование	Содержание обучения по темам, наименование и тематика				
	темы	практических занятий, самостоятельной работы				
1	Создание	Учащиеся пройдут все стадии создания продуктового решения. Познакомятся с инструментами				
	продуктового	спользуемыми маркетологами. Научаться формировать требования к продукту. Формировать и				
	решения	проверять гипотезы. Формировать архитектуру решения и бизнес модели. Обосновывать				
		экономическую целесообразность и перспективность решения.				
2	Макетирование и	Учащиеся получат базовые знание в области проектирования и создания цифровых устройств.				
	прототепирование.	Познакомятся с современными инструментами создания MVP. Получат навыки программирования				
	Создание макетного	контроллеров на языке C++. Освоят среду разработки 3D моделей и процесс вывода на печать на 3D				
	решения.	принтере. Изучат основы схемотехники, электроники, электрических измерений				
3	Подготовка проекта к	Учащиеся изучат основные требования к защите проекта перед потенциальными инвесторами.				
	защите	Научаться создавать презентации решения. Освоят навыки подачи материала его структурирования.				
	Познакомятся с самыми успешными техниками защиты проекта перед инвесторами					
		Проверка и формирование гипотез				
		Формирование ТЗ				
П	рактические занятия	Планирование разработки решения				
		Программирование контроллеров Atmega на языке С				
		Пользовательское тестирование, сценарии проведения тестирования.				
		Базовые элементы языка С++.				
		Составление ведомости ресурсов, финансовой модели, финансового плана.				
		Основы электроники и схемотехники				
		Оценка объема потенциального рынка				
Среда 3д моделирования Fusion. 3Д печать						
	Самостоятельная	Создание итоговой презентации проекта и доклада;				
	работа					

2.4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Планируемым педагогическим результатом учебной программы "Разработка автоматизированных устройств на контроллере Arduino C++" является формирование у обучающихся необходимых знаний и навыков для самостоятельной разработки и программирования устройств на платформе Arduino с использованием языка программирования C++.

Основные компетенции, которые можно ожидать от студентов, завершивших данную программу, включают:

- 1. Знание основных принципов работы контроллера Arduino и его аппаратных возможностей.
- 2. Умение разрабатывать и программировать различные схемы и устройства, используя контроллер Arduino.
- 3. Глубокое понимание принципов языка программирования C++ и его применение при разработке на платформе Arduino.
- 4. Навыки работы с разнообразными датчиками, модулями и компонентами, совместимыми с Arduino.
- 5. Умение проектировать и реализовывать качественное программное обеспечение для управления устройствами Arduino.
- 6. Навыки поиска, анализа и решения проблем с помощью Arduino и C++.
- 7. Умение самостоятельно исследовать и изучать новые возможности Arduino и C++ для расширения функциональности устройств.
- 8. Умение работать в команде, аргументировано выражать свои идеи и решать задачи совместно.

В результате успешного освоения программы учащиеся будут способны самостоятельно разрабатывать, программировать и создавать автоматизированные устройства на базе контроллера Arduino, а также дополнять их функциональность с помощью языка программирования С++. Это позволит им применять полученные навыки в различных сферах, таких как робототехника, автоматизация дома, интернет вещей и другие.

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Материально-техническое обеспечение

Для реализации программы необходима следующая материально- техническая база и оборудование:

№	Материально-технические средства	Количество
1	ПК (ноутбук) с установленным ПО	10
2	ΠO fusion 360 for students	10
3	Набор «Матрешка»	10
4	3Д принтер	2
5	Мультиметры	10
6	Лабораторный блок питания	10
7	Набор «Малинка»	10

№	Расходные материалы	Количество
1	Пластик 3Д	2
2	Электронные компоненты (по запросу)	10

Информационноеи учебно-методическое обеспечение

Используются электронные ресурсы

- 4.2.2. Электронные и Internet-ресурсы
- 1. Мастер-классы с зимней онлайн-школы Fusion 360 | Autodesk Education CIS [Электронный ресурс]. URL: https://oooiso.ru/winterschool2016/masterclasses/ (дата обращения: 01.02.2022).
- 2. Джереми Блум Изучаем Arduino. Инструменты и методы технического волшебства.pdf [Электронный ресурс]. URL: https://vk.com/doc62905369_466063708?hash=ef5e110e86c6b80a57&dl=17ab87 6c59befba649 (дата обращения: 01.02.2022).
- 3. Наставник предпринимательского проекта [Электронный ресурс]. URL: https://academy.sk.ru/events/214 (дата обращения: 01.02.2022).
- 4. Autodesk Fusion 360. Очень краткий курс | Электроника для всех [Электронный ресурс]. URL: http://easyelectronics.ru/autodesk-fusion-360-ochen-kratkij-kurs.html (дата обращения: 01.02.2022).

Кадровое обеспечение образовательного процесса

Требования к квалификации педагогических кадров:

реализовывать программу может педагог (или старший педагог) направления «Схемотехника, электроника и робототехника», направления «Алгоритмизация, программирование и ИКТ».

3.3 ОЦЕНКА РЕАЛИЗАЦИИ ПРОГРАММЫ И ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ПРОГРАММЫ

5.1.

Содержательный	Оценка в баллах	Кто оценивает
модуль		

Формы итогового контроля

Итоговый контроль по результатам освоения программы проводится на этапе подготовки и демонстрации финального проекта учащегося, т.к. на данных этапах можно четко увидеть и оценить приобретенные знания, навыки и умения.